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A perturbation theory for steady states of interacting particle systems is 
developed and applied to several lattice models with nonequilibrium critical 
points near an absorbing state. The expansion is expressed directly in terms of 
the kinetic parameter (creation rate), rather than in powers of the interaction. 
An algorithm for generating series expansions for local properties is described. 
Order parameter series (16 terms) and precise estimates of critical properties are 
presented for the one-dimensional contact process and several related models. 
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process; interacting particle systems. 

1. I N T R O D U C T I O N  

Despite the growing interest in nonequil ibrium systems, ~1 3~ the statistical 
mechanics  of nonequil ibr ium steady states lags far behind the equilibrium 
theory. One obvious source of difficulty is that  unlike in equilibrium, the 
steady-state probabil i ty distribution on phase space is not  known a priori, 

so that  analysis of nonequi l ibr ium systems must  be based upon dynamics .  

Progress in unders tanding of steady-state behavior  would be particularly 
valuable in the theory of  nonequil ibr ium phase transitions, a topic of 
considerable interest in physics, chemistry, and biology. 

At present, knowledge about  nonequil ibr ium phase transitions is 
based upon (1) mean-field theory (MFT) ,  which cannot ,  of  course, be 
relied on for a quanti tat ive description of critical behavior;  (2) Monte  
Carlo simulations; and (3) field-theoretic renormalizat ion group (RG)  
methods.  While computer  simulations will continue to play an essential 

i Department of Physics and Astronomy, Herbert H. Lehman College~ CUNY, New York, 
New York 10468. 

997 

00224715/89/0600-0997506.00/0 �9 1989 Plenum Publishing Corporahon 



998 Dickman 

role in this field, they must be complemented by analytic methods to 
provide a full understanding of phase transitions. RG methods ~4 8) have 
yielded important insights into critical behavior, but their efficacy may be 
limited when the upper critical dimension dc is significantly greater than the 
dimensionality of the system of interest. For example, the Schl6gl model ~9~ 
exhibits interesting critical behavior for d>~ 1, while d~ = 4 for this model. ~4) 
Another limitation of the RG approach is that it cannot be used to predict 
"nonuniversal" properties, which arise in comparisons between theory and 
experiment or simulation. The method described in this paper offers an 
alternative approach to nonequilibrium phase transitions in lattice models, 
analogous to series expansions in equilibrium theory. 

In this paper I consider stochastic lattice models in which rates of 
creation, annihilation, and diffusion of particles are governed by local rules. 
The transition probabilities do not, in general, satisfy detailed balance 
with respect to any reasonable (finite-range) Hamiltonian, and so the 
models are inherently nonequilibrium. (In some instances the transition 
probabilities may be derived as a singular limit of a Hamiltonian model 
with detailed balance31~ One is interested in the nature of the steady 
state(s) as a function of kinetic parameters such as the creation or 
hopping rates. Various nonequilibrium lattice models have been found to 
exhibit phase transitions and critical points nonanalytic dependence of 
steady-state properties on kinetic parameters. The nature of non- 
equilibrium "universality classes" is not well understood, although there 
has been some discussion of this issue for one-component reaction-diffusion 
systems recently. (6'v't~) 

In the present situation, a method analogous to the high- and 
low-temperature expansions of equilibrium theory, but applicable to non- 
equilibrium models, would be most useful. In this paper, starting from the 
master equation, I derive a perturbation expansion for steady states of 
interacting particle systems and describe its application to several models. 
As in time-independent perturbation theory in quantum mechanics, one 
expands about a model whose time dependence may be solved exactly. This 
provides a formalism which may then be implemented for a particular 
model, as represented by its evolution operator. For a class of 
one-dimensional models, an algorithm has been devised which yields rather 
long series for steady-state properties, leading to precise estimates of critical 
properties. 

The series-expansion method is applied to single-component models 
which exhibit a transition to an absorbing state. Some time ago. 
Brower et aL ~12) derived an expansion for the Reggeon quantum spin model 
which belongs to the same universality class as the models considered here. 
Their field-theoretic high-temperature expansion yielded precise estimates 
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of the exponents q, v, and z (for d =  1 and2)  from an analysis of 
generalized susceptibilities. In contrast with the high-T expansion method, 
the present work deals with an expansion in powers of a kinetic parameter 
v (related to the particle creation rate), rather than in powers of the inter- 
action. Thus far, v expansions have been derived only for the order 
parameter and short-range correlations, yielding the first direct estimate of 
the exponent fl for these models. Long-range correlations and suscep- 
tibilities will be the subject of future work. 

Preliminary results on the v expansion for one system (the "A-model") 
were presented recently in summary form./13~ In this paper the details of the 
method are explained, and several models with different evolution rules are 
considered. The results provide strong evidence of universality, i.e., the 
critical behavior is insensitive to variations in details of the evolution rules. 
The remainder of this paper is organized as follows. Section 2 introduces 
the models of interest. An operator formalism permitting compact expres- 
sion of probability distributions and the master equation is set out in 
Section 3. Section 4 presents a formal perturbation theory for the steady- 
state probability distribution. Detailed applications are described in 
Sections 5-7. In Section 8, I describe a computer algorithm which generates 
extended series for the order parameter and short-range correlation func- 
tions. The results of such computations, and determination of critical 
properties, are given in Section 9. Section 10 contains a brief summary and 
discussion. 

2. M O D E L S  

One expects that, as in equilibrium theory, it will be profitable to focus 
on the simplest models which exhibit the phenomena of interest. The 
models considered here are Markov processes with a discrete state space 
{0 ..... n }A (A c Zd). One physical interpretation is a lattice whose sites may 
be vacant or occupied by a particle of type i (ie {1 ..... n}; in the examples 
considered, n =  1). A configuration {aj} ( j~A) specifies the occupation 
status of each site. Transitions between configurations occur via certain 
"elementary processes"---creation, annihilation, and (in some instances), 
hopping of particles--with probabilities depending on the local environ- 
ment and on certain kinetic parameters. Examples of such Markov 
processes are dynamic ]sing models or lattice gases (equilibrium and 
nonequilibrium), surface reaction models, reaction-diffusion models, and 
epidemic models. They are known collectively as interacting particle 
systems (IPS). ~14) 

When realized in Monte Carlo simulations, the models follow a 
discrete-time evolution. In a unit interval, at most one elementary process 
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occurs, at a randomly chosen site, and the configuration is immediately 
updated. This sort of evolution may be termed sequential, in contrast with 
a stochastic cellular automaton (SCA). (1~ In the latter, each site is updated 
simultaneously. While the dynamic and static properties of a sequential IPS 
and the corresponding SCA (i.e., one having the same elementary processes 
and kinetic parameters) can be quite different, the two models may 
nevertheless belong to the same universality class. An example is the 
contact process (an IPS), which belongs to the same universality class as 
the corresponding SCA, directed percolation. (15 18~ 

The present work is mainly concerned with sequential models. In the 
analysis, it is convenient to use a continuous-time description in which the 
probability for some elementary process to occur in a short time dt is R dt, 
where R is a rate. The state of the system is described by the probability 
distribution on configuration space, which evolves via the master equation. 
This equation is expressed in an operator formalism in the following 
section. The remainder of this section is devoted to introducing the models 
studied in Sections 3-9. Much of the discussion of Sections 3 and 4 is 
applicable to IPS in general. 

The contact process (CP) was introduced by Harris (19~ as a model of 
an epidemic. It is closely related to Schl6gl's (first) model ~ of an auto- 
catalytic chemical reaction, to directed percolation, (17) and to Reggeon field 
theory. (~2'2~ The elementary processes may be thought of as adsorption 
and desorption of particles at the lattice sites. Particles appear randomly at 
vacant sites, at rate 2, independent of the states of other sites (each site is 
either vacant or singly occupied). Occupied sites are vacated at rate nv/z, 
where nv is the number of vacant nearest neighbors and z the total number 
of nearest neighbors. Evidently, a fully occupied lattice (called "poisoned") 
is an absorbing state of the Markov process. However, the contact process 
is known to possess in addition (in the infinite-size limit), a nontrivial 
("active") steady state for sufficiently small values of ,~.(14,19"1 The precise 
value of 2c (above which there is only the poisoned steady state), is not 
known, nor is it rigorously established whether the transition is continuous 
or discontinuous. Monte Carlo simulations 12~ and field-theoretic series 
analysis ~12) in one dimension provide strong evidence of a continuous 
transition at 2c -~ 0.303. 

Denoting the fraction of occupied sites by x, we have, for the ld CP 
in the rate approximation (site mean-field theory) 

dx 
~ - =  ( 1 - x ) [ 2 - x ]  (2.1) 

For 2 < )~c -- 1, the stable steady state is active (2 = 2), while for 2 >~ 1 there 
is only the poisoned steady state, .~= 1. (The overbar denotes a steady- 
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state, average property.) The order parameter for the contact process 
(and for the other models considered below) is the fraction of vacant sites, 
p = 1 - x .  We shall also consider the contact process with diffusion, in 
which particles attempt to hop to nearest neighbor sites at rate D. 

The A-model, introduced recently ~3~ as a simplified description of the 
poisoning of a catalytic surface, (21-241 is identical to the CP, except that 
particles desorb at unit rate provided they have at least one vacant nearest 
neighbor. Particles surrounded by occupied sites are trapped, as in the CP. 
For  a given configuration, the desorption rate in the A-model is greater 
than or equal to that in the contact process, which implies 2c.A>/~c, Cp -2 

Simulations and series analysis (13~ indicate a continuous poisoning 
transition at )-c-~ 0.574 in one dimension. 

In the mean-field treatments of the contact process and the A-model, 
the order parameter vanishes linearly with 2 , . -2 .  Thus, the critical expo- 
nent /~, defined through the relation /7(2)~ (2~-)o) e, is 1. The mean-field 
value is very different from series and simulation results, which yield 
f i~  0.277 and 0.585 in one (12'13~ and two ~12) dimensions, respectively. 

A third, closely related model is identical to the contact process, 
except that (in one dimension) particles with one vacant and one occupied 
nearest neighbor leave the lattice at rate 1/4. This model is more prone to 
poisoning than the CP, but it is reasonable to expect that it, too, exhibits 
an active steady state for sufficiently small 2. The motivation for this choice 
of desorption rates is that in the rate equation approximation, the active 
steady-state solution is ~ =  ( 1 - 2 ; t )  ~/2 for 2 <  1/2, i.e., simple mean-field 
theory predicts fi = 1/2. It is interesting to see if this model--called "N3" 
because of the cubic loss term in the rate equation--really has a ~ value 
which differs from that of the CP. 

The last model ("A2") to be studied in detail has desorption rates 
identical to the CP, but the particles now adsorb in pairs at vacant 
nearest-neighbor sites, at rate ,L Pairwise adsorption is a feature of certain 
surface reaction models, ~21) and it is of interest to determine its relevance 
to critical behavior. 

3. OPERATOR F O R M A L I S M  

An operator formalism is a convenient way to describe Markov 
processes in many-body systems. ~25 27) Here we employ the formalism of 
ref. 13, in which multiple occupancy of sites is forbidden. The basis states 

2 This inequality follows from Corollary II1.1.7 of Ref. 14. 
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for a given site are [~bo.~) and [~bl.~), corresponding to site i vacant and 
occupied, respectively. The basic inner product is 

<0j,, I @k,,> =6;,k (3.1) 

A configuration {a~) is written as a direct product 

[{a~} ) = lq [~o,,g> (3.2) 
i 

so that 

< {~,) I {~;} >= H 6~,,~; (3.3) 
i 

Creation and annihilation operators for site i are defined in the obvious 
manner, 

A~ I~bo,~) = I~l,i> 

A~ [~bl.,> = 0  
(3.4) 

A, I~b~,~> = I~bo,,> 

Ai I~o,,> = 0  

Note that AiA~ + A~Ai= 1. 
The state of the system at time t is 

I t / t ( / )>:  2 p({o'i}, t)I{0"l}> (3.5) 

where the sum is over all configurations and p is the probability distribu- 
tion. Physical states I~u> must satisfy the positivity and normalization 
conditions 

and 

( {a,}l gt> ~> 0, V{a,} (3.6) 

( - I ~ >  = 1 (3.7) 

where 

< - I - I I  (<~o, jl + <~1.:1): Y~ <{~,}1 
J (~,} 

is the projection onto all possible configurations. 

(3.8) 
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Observables are represented by operators which are diagonal in the 
occupation representation. The expectation of obsrvable (9 is given by 

(C)~ ,=  ( l  (2, Ig t )  (3.9) 

For example, the number operator at site j is Nj = A~A i, and Nj I{a~} ) = 
crj F{a~} ). The average density is 

<Nj)~,= }2 aj<{ai}l~>=(-I NI~> (3.10) 
{o,} 

The evolution of the probability distribution is governed by the master 
equation 

d l ~ )  
- S l e )  (3.11) 

dt 

The time evolution e ~s must preserve positivity and normalization; the 
latter condition is succinctly expressed as ( .  ] S = 0. 

We may now write down the evolution operators for the ld models to 
be considered in detail. The simplest, in terms of operator content, is the 
CP, which involves only 1- and 2-site terms: 

Scp= ~ { 2 ( 1 - A ~ ) A + ~ + ( 1 - A ~ ) A i [ 1 - � 8 9  1Ai_I + A *i+lAi+l)]} 
i 

(3.12) 

Since the CP involves only 2-site interactions, it is helpful to regroup this 
into a sum of 1- and 2-site operators, 

S c F = ~ { 2 ( 1 - A i ) A ~ + ( I - A ~ ) A i  
i 

-- � 8 9  i I + ( 1 - A ~ _ I ) A i _ I A ~ A , ] }  

=- ~ Scp.i (3.13) 
l 

The evolution operator for the CP with diffusion may then be written in 
the form 

SCRD ---- 2 {(l -- D) Scp, i + D R }  (3.14) 
i 

where 

~ i = � 8 9  1)A~Ai 1] (3.15) 

describes nearest-neighbor hopping. 
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If we define 

S,=Scp+tl~(1-A~)A,EA~_~A~ 1A,+IA~+~+A~+~Ai+IA~ IA~_I] 
i 

(3.16) 

then t /= 1/2 yields the evolution operator for the A-model, while the 
N3-model corresponds to t /= -1/4.  This shows that the latter models are 
obtained by adding a three-site interaction to the CP. The results presented 
in Section 9 indicate that this perturbation of the CP is irrelevant to critical 
behavior. 

Finally, the evolution operator for the A2-model is 

SA2=~ -'~, {2(1-A,_~Ai)Ai_~A i 
i 

1 + ~[(1-A~)AiAi_~A~ 1+(1-A~_~)~ A~_~AiA~]} (3.17) 

4. P E R T U R B A T I O N  T H E O R Y  

We wish to determine the stationary probability distribution, i.e., the 
solution(s) to S [ ~ )  = 0. Let us decompose the evolution operator 

S = S ~  V (4.1) 

such that the evolution under S O is solvable, and (-j S o = (-[ V = 0. (Note 
that < ~o1 = (.[ ,  i.e., the left eigenvector of S o with eigenvalue zero is the 
normalization bra.) In this section we derive a formal expression for [ ~ )  
in terms of a reference state [ ~o) ,  the exact steady state for a model with 
evolution S ~ Let [S~  -1 be the inverse of S o in the nonzero subspace. 
If we multiply the equation S I ~ ) = 0  by [S~ -1, and use ES~ -~ S ~  
1 -  ] ~ ~ 1 7 6  I and the normalization condition on [~ ) ,  we find 

(1+ Es~ -~ v ) I ~ > =  I~~ (4.2) 

This is the formal solution for the stationary state. We shall be interested 
in a systematic expansion of (4.2). 

For a finite system with periodic boundary conditions, the unique 
steady state is the absorbing state ]q~). We verify that [~)  satisfies (4.2), 
for the A-model on a ring of N sites, in the Appendix. In the infinite-size 
limit, and for sufficiently small 2, there is also an active steady state which 
we seek to represent by expanding (4.2). On the basis of simulations and 
mean-field theory, we expect the steady states of the models under con- 
sideration to exhibit a critical point at 2,.. Since there appears to be a 
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well-defined active steady state for small 2, we interpret, for any observable 
expressed as a series in 2, the first singularity on the positive-2 axis as 
marking the critical point. Thus, we require an expansion of (4.2) in 
powers of 2 or a related quantity, in contrast with the usual "high-T" 
expansion in powers of the interaction V. In fact, the parameter 2 appears 
in the part of evolution operator which describes a noninteracting system. 
After transforming to a basis of eigenstates of S ~ we shall find that V is 
a polynomial in v = 2/(1 + 2). The portion of V which is O(v ~ is retained 
to all orders at each stage of the calculation. The particle density in the 
reference state I tP ~ vanishes when v ~ 0; in effect, we expand about the 
vacant lattice (i.e., the opposite of the absorbing state). 

5. A P P L I C A T I O N  TO T H E  A - M O D E L  

Referring to the evolution operator (3.16), we see that the obvious 
choice for the reference system is 

S ~  {2(1-A~)A~++(1-A~)A~} = Z S  ~ (5.1) 
i t 

since this portion of S describes a noninteracting system. The interaction is 

V= - - ~  (1--A~)A~A~_IA,_IA~+IA,+I=-Z V~ (5.2) 
i i 

S o has eigenvalues 0 and - ( 1  +2),  with corresponding right eigen- 
vectors 

10o , , )  = (1 - v) I~o , , )  + v I~1 , , )  (5 .3 )  

I@,,~) = Iqto,~) --[~bl,~) (5.4) 

and left eigenvectors 

(~o,  il = (~o, il + (r (5.5) 

(~1,,1 = v(~bo.il - (1 - v)(~bl.,I (5.6) 

where v = 2/(1 + 2). We shall refer to states (~o.,1 and (ffl.i] as "ground" 
and "excited" states, respectively, at site i. Note that (~,.kl Cj .k)= 6i.j and 
that S o has the unique steady state l~P~ S o has eigen- 
states lil . . . . .  im) (sites il ..... im excited, all others in ground state) with 
corresponding eigenvalues - m ( 1  +2).  Let Pm be the projection onto the 
subspace of states with exactly m excited sites. Then 

[S o] 1 = - - ( l - v )  ~ o l  1pm=--(1-v)M - 1  (5.7) 
m = l  
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M 1 is simply division by the number of excited sites. Define raising and 
lowering operators B~ and Bi such that 

B~ {~,,,,> =0 
(5.8) 

B~ 10o,,> = 0  

Bi and B~ are related to the creation and annihilation operators by 

A*,=Bi[I+(1-v)B~]-(1-v)B~[(1-v)+B~] (5.9) 

Ai= B~(vB~ -- 1) - vB~(B~-- v) (5.10) 

Note that B~ I'P~ = (~P~ I B~ = 0. The number operator is 

N~=A~A~=[(1-v)B~-I]Bi+v[B~-(1-v)]B~ (5.11) 

and the steady-state occupation fraction is 

f =  (~~  l (vB, B] -  B~) I~) 

= v - ( 5P~ B, I'P> (5.12) 

We also note the expressions for the pair occupancy fraction 

(N~Nj> = 2  2 -  <SP~ B~ 1~>2+ < ~ ~  I BiBj I~> (5.13) 

and the pair correlation 

g i i - j l  = <N, Nj) - <N,> <Ns) = < ~'~ B~By I~> - < ~P~ B, I'P> ~ (5.14) 

The interaction now takes the form 

V,=B~(B~--v){[(1--v)B~ 1--1]B,_~ +v[Bi 1-(1--v)JB~*_,} 

x {[(1-v)  B~+~--I]B~+~+v[B,+I-(1-v)]B~+,} (5.15) 

Note that [S ~ L V is a sixth-degree polynomial in v, while ). appears to 
all orders in this operator. We therefore adopt v as the expansion 
parameter. Let 

6 

1 + l-S~ -1 V= 1 - R +  ~ t~Jrj (5.16) 
j=l  
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Expanding the stationary distribution as 

I 'P)  =1 ~p~ + v  I ~ , ) + v  2 I~P27+ .-- 

we have, from (4.2), 

t ~ . )  = - ( 1  - R )  -1 

1007 

(5.17) 

min[n ,  6]  

2 TJ I ~P. s) (5.18) 
j = l  

which permits recursive determination of the ]~Pn). 
The operators R and Tj are as follows: 

R=M '~" B~BiD,_tDi+I (5.19) 
i 

TI=M-1ZB~{(B,+I)D,-1D~+,+Bi[ D, iCi+l+Di+lCi i]} (5.20) 
l 

T2=-M ~ZB~{(D~_~D~+~+(B~+I)[Di lCi+l+Oi+lCt_l] 
i 

+ B,[B,_~D,+~+B,+~Di_~] } (5.21) 

T 3 = M  12B~{Di_,Ci+l+Di+tC i l+(Bi+l)Ci 1Ci+l 
i 

+ Bi[B~_~C~+ , +B~+~Ci_,]} (5.22) 

T4=--M-1ZB~{Ci 1Ci+,+Bti ,D,+~+B+i+~Di_t 
i 

+ (B~+I)[B~_~Ci+I+B~+,C~ ,]+B,B~_IB~+~} (5.23) 

Ts=M-~B~{B~ 1C~+I+B~+IC~_~+(B~+I)B~_IB~+I} (5.24) 
l 

T6 = - M - ~ y  ', * t * (5.25) BiBi 1B,+1 
i 

where 

and 

Ci = B~Bi- (B~- 1) B~ (5.26) 

Di= (B~ - 1) Bi (5.27) 

The algebra is greatly simplified by introducing a graphical notation. 
Note that R and Tj consist of products of operators associated with three 
consecutive sites. If the rightmost operator associated with site j is Bj (B)), 
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then site j must be excited (unexcited) in the "incoming" state. Similarly, 
if the leftmost operator is B] (Bj), then site j is excited (unexcited) in the 
outgoing state. We represent the operators associated with site j by a x 
and an excited site in the incoming (outgoing) state by a line above 
(below) the x. Thus we have the following "nodes": 

B i B  ~ ~ x 

BeiBi~--~ 

(5.28) 

Each term in R and Tj may then be represented as a "vertex" containing 
three nodes. Note that there is always a line emerging below the central 
node. The operator R is 

(5.29) 

where the sum over sites (prior to operation of M -1) is now understood. 
Further simplification is possible if we note that the vertices in a given 
operator always occur in symmetrical combinations. We therefore use a 
blob with ni incoming and no outgoing lines to represent the sum of all 
allowed vertices of that kind. For example, 

~ = ~ , k  + k , ,  (5.30) 

+ = ~ , x  + x , ~  + k ~ k  (5.32) 

etc. In terms of this notation we have 

R : M  1[ (~ _ (~ ...{_(~ ] 

T I : M  1 [ 3 ( ~ - 2 ( ~ +  (~ +(~) -(:~ . + ]  

T2 = -M- ' [3  (~ - (~ +3 ( ~ - 2 ( ~  

(5.33) 

(5.34) 

(5.35) 
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+ + + ~ -  ( ~ ) + ( ~ ]  (5.36) 

T4=-M 1 1 - ~ + 3 ~ - ~ + 3 @ - 2 ~ + C ~ ]  (5.37) 

T5 ~-- M - I t  (~) + 3  ~ - q~) ] (5.38) 

T6 = - M  -1 ~)  (5.39) 

It is immediately apparent from this representation that R creates no new 
excited sites, and that T~ and T2 annihilate [~p0), so that (5.18) yields 
I~1> = I~tz> ---0. 

The lowest-order correction to J~'> is 

1~3>-= ( l - R )  - t  T3 [~o> 

Referring to (5.36), we see that 

T3 I~~ 

where we have introduced the notation 

(5.40) 

(5.41) 

and 

so that 

Now, 

(1-  R)-I= I + ( 1 - R ) - I  R 

R(IFI)=�89 

(I --R) 1 lll)=~{(llr)_(ll)+(1) } 

' (  1~3) = -5{ I I I)-3(I I)+ 3(I)} (5.46) 

Notice that evaluation of ( 1 -  R)-1  is straightforward because R does not 
produce any new excited sites. 

(5.43) 

(5.44) 

(5.45} 

etc., for translation-invariant states in which excited sites are arranged in a 
specified sequence. Referring now to (5.33), we see that R( r )=  R( [ [ )=  0. To 
evaluate ( 1 - R )  1 ([if), we note the identity 

__ B t Rt ~o  Ill) Y, Ii I,i>=~ ,-i-, I > (5.42) 
i i 
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Following the same procedure, one finds the next correction to be 

I ~ P 4 ) = - ( 1 - R )  ~ [T I I~P3)+T4 1 ~P ~  

= �89 I ) - 1 E ( 1 1 0 1 ) +  (IOl I)-I + ( IOl)  

- �88 I I)+ �88 I ) -  47-(I) (5.47) 
where 

( I O I ) = ~ B ~  2B~I~  ~  (5.48) 
i 

and the obvious generalizations to (kl01), etc., are used to denote 
translation-invariant states with a specified sequence of excited (r) and 
ground (0) sites. 

From (5.12) we see that Y,, the nth-order contribution to ~, is just the 
coefficient of - ( I )  in I~n).  Thus we have 

2 = v + 3v3 + 7v4 + O(v 5) (5.49) 

Similarly, the nearest-neighbor pair occupancy fraction is, from (5.13), 

<Ni_ ~Ni) = v 2 - 2vc~l) + c~ I I) 

= /32 _1_ 3/)3 + ~/)4 _~_ 0(/)5) (5.50) 

where c~l ~ is the coeff• of (I) in 1~'), etc. The nearest-neighbor pair 
correlation is 

gl  = C(I l ) -  C~l)= 3/)3 + 1/)4 -I- O(/) 5) (5.51) 

which shows the expected positive correlation, due to inhibited desorption. 
Since the direct evaluation of further terms in the expansion becomes 

quite tedious, the derivation of long series requires an efficient computer 
algorithm. In principle, one would like to determine the steady-state 
probability distribution (i.e., the I ~ , ) ) ,  but in practice the calculation of a 
local property such as )? or g~ is much simpler. This is because only a small 
subset of the states in I ~ , )  are relevant to local properties. In Section 8 an 
algorithm is described which generates the states required to evaluate 2 
and gl. 

The expansions for the CP and the N3-model parallel the derivation 
outlined above, as we may again take S O as in (5.1). For the evolution 
operator (3.16), one finds that the lowest-order correction to I ~ )  is 

i~p=) = 2 r / -  1 [ 2 ( I ) - ( I  I)] (5.52) 
2q+  1 

where the CP corresponds to q = 0 and N3 to r/= -1 /4 .  Extended series 
for these models are given in Section 9. 
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6. THE C O N T A C T  PROCESS WITH D IFFUSION 

In this section we consider steady-state perturbation theory for 
a model which incorporates hopping in the unperturbed evolution. 
Absorbing a factor of ( 1 - D )  into a rescaled time variable, we write the 
evolution operator for the ld CP with nearest-neighbor hopping (at 
rate D) as 

S = ~  {Scp,,+/3~} (6.1) 
i 

where / 3 = D / ( 1 - D ) ,  and Scp., and ~ are given by (3.13) and (3.15), 
respectively. Several perturbative approaches are possible: (1)Take the 
noninteracting creation and annihilation terms [i.e., the rhs of (5.1)] 
together with D~ as S ~ and work in a basis of eigenstates (characterized 
by a set of wavevectors) of this new reference system; (2) take S o as in the 
A-model, and derive an expansion in v and /3; (3)take S o as in the 
A-model, but treat diffusion nonperturbatively. In the present, preliminary 
application, we pursue the last-mentioned approach to second order in v. 

We may write S o in the form 

M (6.2) S ~ -(1 +2) mPm- 1 - v  
m = O  

In terms of raising and lowering operators, we have 

~ = � 8 9  1B,)B,_~B~+(I-B~B;_I)B;B~ 1] (6.3) 

or, in the notation of (5.28), 

(6.4) 

so that the hopping operator transfers excitations between neighboring 
sites, but does not create or destroy them. 

From (3.13), one has for the interaction 

V,= -�89 +(1-A~_I)A,_,A~A;]} (6.5) 

It proves convenient to introduce the v expansion of [~P) directly into 
( S ~  V ) I ~ ) = 0 .  Hence, we expand V (rather than IS~ -1 V) in 
powers of v, obtaining 

3 

V= ~ vJtj (6.6) 
j = O  
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where 

and where 
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to= (~-�89 (6.7) 

t2= �89 (~- �89  q) + ~) (6.9) 

/3 = --(~ (6.10) 

+ - ~ x  + ~<~ + ~<~ + x~< (6.11) 

etc. 
We may now derive the lowest-order (in v) correction to I~) .  Upon 

inserting the expansion (5.19) into 

- - - + 5 ~ +  v I ~ ) = o  (6.12) 1--v 

we obtain, at order v, an equation which implies that [~Pl)= O, and at 
order v 2 

(to - M + D~)  1~'2) = - t  2 l ~ o )  = (1)  _ (]l) (6.13) 

The solution must be a translation-invariant sum of states with one or two 
excited sites; hence, we take 

1~2 ) = c'l~](I ) + ~ bj(/j /)  (6.14) 
J 

where 

( / j / ) = ~  B~ iB~I ~ ~  (6.15) 
i 

so that (/1/) = (IlL (/2/) = (t OIL etc. One readily verifies that 

and 

9 ( I ) = 0  (6.16) 

9 ( / 1 / )  = (/2/) - (/1/) (6.17) 

~( /  j / )  = (/ j -  1/) + (/ j + 1/) - 2(/ j / )  (6.18) 
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for j~>2. Also note that t o 1 ~ 2 ) =  b~[-(I 1)-(P)].  Upon inserting (6.14)in 
(6.13), we obtain, from the coefficient of (F[) 

0 = 1 - bl + D[b2 - bl] (6.19) 

while the coefficient of ( / j / )  (for j~> 2) yields 

0 = - 2 b j  + D [ b j _ l  + bj+l - 2b s ] (6.20) 

Notice that b s in (6.19) and (6.20) may be interpreted as the average 
number of random walkers at site j in the steady state of the following ld 
process. Independent random walkers appear at j =  1, at rate 1 + b l ,  
disappear (from any site) at rate 2, and hop to neighboring sites at rate D, 
subject to a reflecting barrier at j =  0. We may solve for the steady-state 
density by placing an image source of strength ! + bo at j = 0 and removing 
the barrier. One now has (for j ~  Z) 

O=(l-t-bj)(6j, o+~)j, 1)-Zbj+D(b j l+bj+l-Zbj) (6.21) 

Introducing the generating function g ( k ) =  ~ j  eiJkbj, one finds 

(1 + eiX)(1 +b)  
g(k)  - (6.22) 

2(1 +/))(1 - / )  cos k) 

Using 

one then obtains 

bl = f~ dk _~ 2zc e - i kg (k )  

= ( 1 - D )  1/2 
bl \1 --~-O// (6.23) 

When D ~ 0, f 'P2) = -2 ( l )  + (I l), in agreement with (5.51) for q = 0. The 
occupation fraction is 

2 = v + (1 + b~) v 2 + O(v 3) (6.24) 

The v 2 term is largest when D = 0, reflecting the breakup of clusters (hence 
easier desorption) as the diffusion rate grows. 

7. T H E  A 2 - M O D E L  

As noted in Section 2, the distinctive feature of this model is pairwise 
adsorption of particles. This means that the single-site creation term in S o , 
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as given by (5.1), is not part of the evolution operator for the A2-model, 
(3.17). Rather than adopting an S o which incorporates pairwise creation, 
we employ a noninteracting reference system. Since (3.17) does not suggest 
a specific choice for the coefficients of the creation and annihilation terms, 
we write 

S O = }  ." ' { a ( 1 - A i )  A * , + b ( 1 - A } ) A , }  (7.1) 
i 

with a=~)~, and c~ and b left unspecified for the moment. If we let 
v--a/(a+b), then the eigenvectors of S o are as in (5.3) (5.6), and the 
corresponding eigenvalues are 0 and - ( a  + b). The inverse of S o (on the 
nonzero subspace) is - ( 1 - v ) M  l/b, and (5.8)-(5.10), relating to the 
raising and lowering operators, are again valid. The interaction is now 

1 
v, = s , -  g [ s  o + s o 11 

= 2 { ( 1 - A ,  1Ai) A~ IA* c~ _ _ , - ~ [ ( 1 - A ~ ) A ~ + ( 1 - A , _ , ) A ~  1]} 

1 
+ ~ [ ( 1 - A ~ ) A i ( A ,  1A~ I -b )+(1-A~_I )A i_ I (A~A~-b) I  (7.2) 

If we express Vi in terms on raising and lowering operators and introduce 
graphical notation as above, we find that the resulting expression is 
simplest for a particular relation between a and b. In order that all of 
the vertices with one incoming and one outgoing line combine to give a 
multiple of + ,  we must choose a+b= 1. Then v=c~2 and [S O ] 1= 
- M  1, and 

I) V,=-  [ - ( i - I . ) )  2 9 "~ (i--V) 2 (I--2V) ~) --(I--V) + 
(% 

+ I,- I 1-2 I # 

1 
+ ~ I v ( l - v )  ~3 + 2 v 2 ( 1 - v )  (~ 

(7.3) 

R 4 We write I + [ S  O ] 1 V = I -  + Z j = l v J T j ,  where 

 --M-lr t7.4/ 
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TI = M - , [ ~  1( ? _ (~) ..~_ + _ (~ _~_ (~) _ (~)) 

Notice that T 1 I~P ~ # 0, so that (unlike the models considered until now) 
there is a first-order correction to p~), given by 

[~Pl>= - I _ ~ T ~  [ >= 1 (I)+!(tl):~ (7.6) 

We now choose ~ = 3, so that the first-order correction to 2 vanishes. [The 
result, .~?= 32 + 0(22), is of course independent of our choice for c~.] With 
this value for 5, the Tj are given by 

T,=-~M-I{ Q + 2  ~)+ + -  (~ - 4  ~ ) - 2 ( ~ }  (7.7) 

T2=--~M-'( Q--2 (~+2 +--4~)} (7.8) 

T3= - � 8 9  +2  ~)+2~)  } (7.9) 

= I ( 7 . 1 0 )  

An expansion for the steady-state properties of the model may be 
derived using the algorithm described in the following section. We see that 
the absence of an identifiable noninteracting portion of S does not preclude 
the application of perturbation methods. 

8. AN A L G O R I T H M  FOR G E N E R A T I N G  SERIES E X P A N S I O N S  

The expansions derived above involve recursive determination of the 
I~P,,), as expressed in (5.16)-(5.18). The process consists of many similar 
elementary steps, which are readily coded into an algorithm. In calcula- 
tions of local properties such as 2, the number of steps at each order in 
perturbation theory is finite. 

The basic entities in the problem are the operators R and Tj and the 
components ]~n). The latter are represented [as in (5.48)] in terms of 
states of the form 

( I S r l  ..... s 2 l ) ~ - 2 B ; _ r B ;  ~ B~ kl ~0 > (8.1) 
j kiss= 1 
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where s i=  0 or 1- It is convenient to regard a string of O's and ]'s as a 
binary number, so that each corresponds to a different (odd) integer. We 
refer to a state by its label [(I I) = (3), etc.], and denote the coefficient of 
(r) in ] ~ ,  ) by C(n, i"). 

The operators R and Tj are represented by vertices with three nodes. 
(In this discussion we consider three-site operators; the generalization to 
n-site operators is obvious.) We may again code the incoming and out- 
going patterns as binary numbers, so that, for example, the vertex ~ :~ ~ has 
input 7 and output 6. We use arrays T(j, o, i) to represent the coefficient of 
output o, for input i, in Tj, and similarly for R. For example, the nonzero 
elements of R, (5.35), for the A-model are 

R(2, 7 ) =  R(7, 7)--- 1 
(8.2) 

R(3, 7 ) =  R(6, 7 ) =  - 1  

Note that these arrays cannot represent the nonlocal operator M 1 
appearing in (5.33)-(5.39). The effect of M -L is to introduce a factor m ~, 
where m is the number of I's in the string. 

As is suggested by (5.18), evaluation of I~n)  proceeds in two stages: 
first, operation of the Tj. on (previously determined) ]~Pn j ) ,  then opera- 
tion with (1 - R ) - 1 .  The first task, then, is to generate the strings represen- 
ting the sum in (5.18). The states generated by Tj, as it operates upon the 
states in I~n_j ) ,  are evaluated, and C'(r) [which temporarily stores the 
coefficient of (r) in the sum] is updated. To begin, consider 

~) I'P ~ =y~ r( j ,  r, O)(r) (8.3) 
r 

where r = 2 ,  3, 6, or 7, corresponding to the strings (010), (011), (110), and 
([ I I ), respectively. Clearly, any O's lying to one side of all the O's are super- 
fluous (all of the sites outside the string are in the ground state). To 
eliminate this redundancy, each generated string (r) is divided by 2 until an 
odd-numbered string (r) is obtained. Then C'(r) is augmented by 
T(j, r, O)/m, where m is the number of I's in string (r). For example, when 
T3, (5.36), operates on I ~ ~  the terms (2), - ( 3 ) ,  - ( 6 ) ,  and (7) are 
generated; (2) is converted to (1), (6) to (3). The number of I's in each 
string is determined (to find rn-~), yielding C ' (1 )=  1, C ' ( 3 ) = - 1 ,  and 
C'(7) = 1/3. 

Now consider Tj(r) (r#O). The state (r) a string of 0's and ]'s, 
embedded in an infinite sequence of 0's is regarded as a static pattern, 
while Tj (which involves a sum over Z), sweeps across the lattice. For 
example, if r = 3, Tj operates at each site in . . .00011000.. . ,  encountering 
the sequence of inputs: ...0, 0, 4, 6, 3, 1, 0 ,0  .... For each input i, Tj 
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may generate strings (r') by replacing i with a sequence o. For each (r'), 
the corresponding (_r') (free of extraneous 0's) is formed, and C'(_r') is 
augmented by C ( n - j ,  r) T(j,  o, i)/m', where m' is the number of excited 
sites in (r'). 

Note that Tj(r) comprises an infinite set of strings if T(j, o, 0)-r for 
some o. However, as will be shown below, only a restricted set of strings 
contributes in calculations of local properties. Suppose, then, that we need 
only consider strings up to r . . . .  where rma x < 2  .... , SO that the strings 
extend over at most r/ma x sites. Let (r) extend over n sites. Then the range 
of operation of Tj need not extend beyond margins of r/ma x --r/  O's to the 
right and left of the outermost I's in (r), and a finite set of strings (r') is 
generated. 

It remains to evaluate - ( 1 - R )  -~ acting on ~2j Tj [~P. j ) .  Let 

R(r) = at(r) + ~ ar,(r') (8.4) 
r'  

Since R creates no new excited sites, r ' <  r. From (5.43) we have 

(1-R)-l(r)=(1--ar)-l[(r)+(1-R) I~/a~,(r')l, (8.5) 

Let the largest string in Yj T; [~Pn j )  be (rmax). Applying (8.5) to (rmax), 
one obtains 

C(n, rroax ) = --C'(l'max)/(1 - - a  .... ) (8.6) 

The r' terms in (8.4) are added in to the remaining terms in C'(r'), via 

C'(r') --* C'(r') + C'(rmax) ar,/(1 -- a .... ) 

This procedure is repeated for each string r' < r . . . .  in descending order, to 
obtain the C(n, r). 

As noted above, only a finite set of strings need be retained at each 
order in the evaluation of a local property, even when ]~P~) includes an 
infinite number of terms. Consider, for example, the calculation of ~? in the 
A-model, to O(v6). The only coefficient required for )? is C(n, 1), since ~ =  
v -  Y',, C(n, 1) v ~. At nth order, then, we only require C'(r) for those strings 
which yield a nonzero (1) component under repeated action of ( 1 -  R) - I  
Since R is nonzero only for input i = 7 ,  (11[), (r) contributes to 2 if and 
only if ( r )=  (PI[-..I), i.e., r must equal 2 m -  1 for some m. If (r) includes 
any "gap" (one or more 0's between I's), then all strings in (1 - R )  -1 also 
contain a gap. Thus, in the sixth-order calculation, the entire series 
(I 110[ [ I), (I 1100r I I),.-., generated by 7'31~3) may be discarded; only 
(]]]l[[) contributes. Similarly, if the calculation were extended to seventh 
order, one would retain (in sixth order) (]tl 0l[]), but discard strings with 

822/55/5-6-11 
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larger gaps, or with more than one gap, since T~ (5.36), can only create a 
single new excited site. Considerations such as these lead to restrictions on 
the length, and the number of zeros, in strings which need be retained at 
each step of the calculation. Such restrictions are essential for deriving 
useful series with a reasonable expenditure of computer time. [For  
example, the calculations to O(v ~6) presented in the following section 
require about 1.5 h on an IBM 3081. The CPU time increases by roughly 
a factor of 3 with each additional order.] 

9. RESULTS A N D  A N A L Y S I S  

Using the algorithm described in the preceding section, series for the 
occupation fraction x and for c(ll) have been derived to O(v ~6) for the CP, 
A, and N3-models. The coefficients are displayed in Tables I-III. To get a 
feeling for the behavior of the series and to derive preliminary estimates for 
critical properties, we examine the ratios a,  = ~/2,_1 of successive coef- 
ficients in the v expansion of ~ and the n ~ oe intercept values extrapolated 
from successive ratio pairs. These are plotted versus n-1 in Figs. 1-3. While 
the ratios are most regular for the CP, there is in each case some transient 
superimposed on the linear asymptotic behavior 

!) t*'/ 

Table I. Coeff ic ients in v Expansion for  ~ and cr for  the Contact  Process 

rt -in ~ln) 

1 1 0 
2 2 1 
3 5 3 
4 14�89 11�89 
5 46 38�89 
6 154~ 130~ 
7 540.8359375 453.7109375 
8 1946.94824218 1628.23730468 
9 7163.09068467 5979.10337999 

10 26805.78821403 22352.60670904 
11 101690.65953520 84757.87118554 
12 390112.71682587 325100.84536907 
13 1510616.55538565 1258873.28617338 
14 5895971.55468865 4913837.16374249 
15 23168987.55131961 19312114.71645609 
16 91584008.27053567 76350090.99372987 
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Table l l .  Coeff icients in v Expansion f o r x a n d  C(ll) for the A-Model  

n X n (n) C(111 

1 1 0 
2 0 0 

2 2 
7 4 a �88 

5 4~ 3~ 
6 9 ~  4 ~  
7 22.78375772 13.19810957 
8 51.26263191 28.47887419 
9 121.50081143" 70.23817952 

10 288.96525435 167.46444292 
11 699.61608118 410.65082683 
12 1710.03808463 1010.42200345 
t3 4221.27861244 2511.24052781 
14 10501.39300128 6280.11438884 
15 26308.02818891 15806.63518763 
16 66295.22638567 39987.19819676 

" In ref. 12 this coefficient is incorrectly listed as 125.50... due to a typographical error. 

Table l l l .  Coeff icients in v Expansion f o r ~ a n d  C(lt) for the N3-Model  

rt  2,~ n , (n)  C(ll) 

1 1 0 
2 6 3 
3 30 18 
4 145 115 
5 727~ 672~ 
6 3867~ 3845~ 
7 218011 22229~ 
8 128549.55956218 131241.44845107 
9 782443.14221051 792776.24931499 

10 4868622.93831731 4888476.47479335 
11 30776908.02315692 30662504.54753078 
12 196913527.8192085 195005146.9990770 
13 1272052154.464451 1254074932.323790 
14 8283459402.101379 8138956748.130198 
15 54309508850.35882 53224854413.13061 
I6 358180553658.0506 350317837908.6155 

822 /55 /5 -6 -11"  
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Fig. 3. 
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Tablle IV. Critical Parameters for the CP, A, and N3-Models Derived from 
Pad~ Approximants to Series for d/dv log(1 - ~ )  

Model Approximant 2 c /~ 

CP [6. 7] 0.30323 0.2770 
[7, 6] 0.30327 0.2776 
[7, 8] 0.303243 0.2772 
[8, 7] 0.303237 0.2771 

A [6, 7] 0.57410 0.277 
[7, 6] 0.57410 0.276 
I-7, 8] 0.57410 0.2765 
[8, 7] 0.57410 0.2765 

N3 [6, 7] 0.1621 0.2795 
[7, 6] 0.1621 0.2794 
[7, 8] 0.16213 0.2797 
[8, 7] 0.16208 0.2780 
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Extrapolating 2e = (a - 1 ) -  1 and/3 = b - 1 from the estimates derived from 
successive ratio pairs, one finds 2c ~ 0.575, /3 ~ 0.28; 2 c -  0.304, /3_-_ 0.27; 
and 2c~0.163, /3--_0.27, for the A, CP, and N3-models, respectively. 

More precise estimates are obtained from Pad6 approximants to the 
series for d/dvlog(1-~). The resulting values of 2c and are given in 
Table IV. Included are two 14th-order series results, as well as the full 
16th-order results, in order that the degree of convergence may be judged. 
The values for 2c are seen to be quite stable. The p estimates for the three 
models are also quite close, although the N3 values are slightly higher than 
the others. It seems very reasonable to conclude that the CP, A, and 
N3-models belong to the same universality class, i.e., the three-site inter- 
action introduced in (3.16) is irrelevant to critical behavior. Ratio and 
Pad6 approximant analyses of the coefficients ~(n) and the pair occupancy ~(IE) 
fraction yield a similar behavior to the ~ series, and indicate that the 
critical singularity of these quantities is also governed by the exponent/3. 

Based on the results quoted in Table IV, I propose the value /3-- 
0.277 + 0.001 for the CP/Schl6gl model/Reggeon field theory class in one 
dimension (and, by extension, for directed percolation in 1 + 1 dimensions). 
This result is in good agreement with previous estimates:/3 = 0.277_ 0.002 
from series analysis of generalized susceptibilities in Reggeon field 
theory]  12) /3 = 0.273-t-0.006 from Monte Carlo simulations, ~2~ and, more 
recently,/3 = 0.2765 _+ 0.0005 from series analysis of directed percolation. (28) 
[These calculations furnish /3 indirectly, through the exponent relations 
/3=6v for Reggeon field theory, and /3=(vlt+v.-7)/2 for directed 
percolation.(29)] 

For  the A2-model, only a relatively short series has been derived so 
far. Because two new excited sites may appear at each order in perturbation 
theory, the eight-order calculation for the A2-model makes CPU time and 
storage space demands comparable to the 16th-order calculations for the 
other models. The coefficients for 2 and c(il) in terms of v =  32 are given in 
Table IV. A glance reveals that the ratios do not follow a regular trend. In 
fact, analysis of the series for d/dv l o g ( 1 -  2) reveals an (unphysical) domi- 
nant singularity at 2 = -0.131, whereas simulations (3~ indicate 2 c ~ 0.186. 
This suggests that we transform to the variable w = v/(1 + v). The resulting 
series has a much more regular behavior; the ratios are plotted in Fig. 4. 
Extrapolation of the last ratio pair in the w series for 2 yields 2(. = 0.187, 
while the last pair in the series for d/dw l o g ( 1 - 2 )  yields 2c=0.188. The 
present series is too short to permit a precise estimate of 2~, or any useful 
estimate of/3 for the A2-model. 

In ref. 13 the Pad6 approximant for d/dv log(1- :~)  was used to derive 
predictions for the occupation fraction in very close agreement with Monte 
Carlo simulation results of the A-model. Figure 5 shows a similar corn- 
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Fig. 5, Occupation fraction 2 versus 2 for ( 0 )  the A2-model and (O)  the N3-model, from 
Monte Carlo simulationsJ 3~ ( - - )  The series expansion predictions. 
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TableV.  Coefficients in vExpansion f o r x a n d  C(ll) for theA2-Mode l  

n 2 n c((~l) I 

1 1 1/3 
2 -1/3 -2/9 
3 139/216 25/72 
4 0.0654899691 -0.150559416 
5 0.5412416811 -0.260070047 
6 0.5104784140 0.235710699 
7 0.9705235878 -0.248591396 
8 1.149277989 -0.012648025 

parison between theory and simulation (3~ for the N3 and A2-models. In 
the former case, the prediction for 2(2) was obtained by integrating the 
[-8, 7] Pad6 approximant for the logarithmic derivative. For the A2-model 
2(2) was derived using the w series, extended (to n=5000,  to ensure 
convergence), by assuming linear behavior of the ratios a,  for n >~ 9. The 
agreement between theory and simulation is excellent. 

10.  S U M M A R Y  A N D  D I S C U S S I O N  

Using rather straightforward operator and perturbation methods, 
useful series expansions for nonequilibrium lattice models have been 
derived. I have illustrated the utility of the method for one-dimensional 
models with two- and three-site interactions, and with pairwise as well as 
single-site adsorption. Preliminary results for a diffusive model were also 
presented. The method is well suited to computer analysis in which the 
algebra is represented diagrammatically, and should be applicable to a 
variety of lattice models exhibiting nonequilibrium phase transitions. 

The numerical results presented in Section 9 yield a precise/~ value for 
the CP/Schl6gl-model class in one dimension, and confirm the expectation 
that the sort of three-body interactions which differentiate the A- and 
N3-models from the CP are irrelevant to critical behavior. (They also 
remind one that a rate-equation approach to critical behavior may be quite 
misleading! ) 

A natural extension of the present work is to study models with 
higher-order kinetics, two or more species of particles, and in two or more 
spatial dimensions. A systematic method for calculating (long-range) 
correlations would be most valuable, as would a more effective means for 
studying models with diffusion. A series expansion method for 
time-dependent behavior also seems to be feasible. 
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Finally, since sequential interacting particle systems and their corre- 
sponding stochastic cellular automata can belong to the same universality 
class, one may hope that series expansions (applied to sequential IPS) and 
SCAs (capable of efficient simulation on parallel computers) will together 
provide a powerful means for studying nonequilibrium critical phenomena. 

APPENDIX :  S T E A D Y - S T A T E  D I S T R I B U T I O N  FOR THE 
A - M O D E L  ON A FINITE RING 

Consider the A-model on a ring of N sites, with periodic boundary 
conditions (CrN+ ~ = a~). The absorbing state is 

N 

I ~ )  = 1-[ I~1,j) 
j = l  

N 

= [ I  r ( v -  1 ) 1 0 w )  + 100.;)] 
j - - I  

N 

= - - 2  ( v - - l ) "  Z B~I""B~,.I 9~  (A.I) 
m=0 [Jl,..., J,~} 

The m = 0 term is simply I ~'~ Using (5.2), (5.9), and (5.10), we may write 
the interaction as 

V,=-B~(v-B,)A~_~Ai ~A~+,Ai+ L (A.2) 

so that, for a system with periodic boundary conditions, 

Vl ' t ' )=-ZI4 ' , ,1 )  PI [(v-1)lq',,~)+lr 
i j ( r  

N 

= -  2 m ( v - 1 )  m 1 2 B~'"Bj21~P~ (A.3) 
m - 1 {J~ ,-.-, Jm]  

where m denotes the number of excited sites. Using (5.7), one finds that 
[S~ - t  V ] ~ )  is given (A.3), with the factor rn(v-1) m 1 replaced with 
( v -  1) m. Thus, [S~  -I  VIq~)= - ( 1 ~ ) -  f ~po)), i.e., we have verified that 
(1 + [S ~ 1 V)[qs) = I~p ~  for the A-model on a ring. 
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